
Please do not redistribute slides without prior
permission.

1

Introduction to C++ Containers
-- Know Your Data Structures

with Mike Shah

17:15 - 16:15 Fri, November 12, 2023

~60 minutes | Introductory Audience 2

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Abstract

The C++ Standard Library provides a common set of data structures (known as containers)
for inserting, updating, and removing data. Since the most recent standardization of C++ 23,
additional container and container adaptors have been added. In this talk, I will discuss how
C++ organizes these containers (sequence, associative, unordered associative, and
adaptors) targeted at a beginner who wants to understand how to navigate the STL. ALong
this journey trade-offs with each data structure will be discussed. Listeners to this talk will
leave with a cheat-sheet of data structures, so they know immediately which data structures
to use when starting a project. C++ examples will be shown for how to use each container,
the time complexity of the operations, the common implementation of each container. Some
other common 'gotchas' regarding thread-safety and iterator invalidation will be displayed in
these examples. Finally, time will be spent at the end of this talk highlighting the new C++ 23
flat container containers.

The abstract that you read and enticed
you to join me is here!

3

Code for the talk (or Google my name and find talk listed on website)

● Located here: https://github.com/MikeShah/Talks/tree/main/2023/meetingcpp

4

https://github.com/MikeShah/Talks/tree/main/2023/meetingcpp

Your Tour Guide for Today
by Mike Shah

● Associate Teaching Professor at Northeastern University
in Boston, Massachusetts.

○ I love teaching: courses in computer systems, computer graphics,
geometry, and game engine development.

○ My research is divided into computer graphics (geometry) and
software engineering (software analysis and visualization tools).

● I do consulting and technical training on modern C++,
DLang, Concurrency, OpenGL, and Vulkan projects

○ Usually graphics or games related -- e.g. Building 3D application
plugins

● Outside of work: guitar, running/weights, traveling and
cooking are fun to talk about

5

Web
www.mshah.io

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io

More STL than can fit in a talk....

● NOTE: I will not cover every container
today in depth, so some slides may go fast
(but you can pause, and the slides were
created to otherwise help you)

● If you don’t find what you’re looking for:
○ “Mike Shah C++” or “Mike Shah STL”
○ or
○ www.courses.mshah.io

6

http://www.courses.mshah.io

Data

7

All we have is data

8

● At the end of the day--computers are
machines that help us transform
data as quickly and precisely as
possible

○ Datain → operation → Dataout

● The machine to the right is a
‘Turning machine’ which interprets
one symbol at a time and applies
some operation to the data.

○ We have some higher level abstractions
in C++ however to help us manage and
organize the data.

An example of a Turning Machine
https://en.wikipedia.org/wiki/Turing_machine

https://en.wikipedia.org/wiki/Turing_machine

Fundamental Data Structures

9

Data Structure Definition

10

● Similar to our use of a shelf, bookcase, drawer, etc. to organize everyday
objects we organizing data in computers with data structures

https://en.wikipedia.org/wiki/Data_structure

https://en.wikipedia.org/wiki/Data_structure

Fundamental Data Structure: Built-in Array (1/2)

● In C++ we have built-in arrays which are
contiguous chunks of memory.

○ Arrays are a homogeneous data structure where all
of the elements are of the same data type.

■ i.e. If you declare ‘int array[9]’ you have
9 equally sized integers of type ‘int’

■ Note: With arrays, we need to be careful not
to access something out of bounds (i.e. index
0 to 8 is my range)

11

Fundamental Data Structure: Built-in Array (2/2)

● We can allocate an array statically
(fixed-size)

○ This array cannot change sizes -- the allocated
memory is ‘static’ or and the size of the array is
unchangeable after compiling our code.

● We can allocate an array dynamically at
run-time.

○ We acquire a chunk of memory dynamically with
‘new’ in C++, and we hold the start of that chunk of
memory with a pointer of the same type.

○ Through careful management, we can effectively
shrink or expand the size of a dynamic array by
reallocating a new chunk of memory

12

Fundamental Data Structure: Linked (1/2)

● Another fundamental data structure is a
‘linked’ data structure

○ Linked data structures are formed of
individual pieces of data and associated by
‘chaining’ them together

○ In C++ pointers (which store memory
addresses) are the primary mechanism to link
data together.

13

Fundamental Data Structure: Linked (2/2)

● Usually we wrap together a ‘struct’
with one member variable as a
‘pointer’ alongside the data to
implement a data linked structure

● Typically these type of data
structures are easy to expand,
because we can add a new link
(often called a ‘node’) to them.

○ However, this again has to be
managed.

14

Data Structure Building Blocks

● So our building blocks for data structures are
○ 1.) Built-in Arrays
○ 2.) Linked Nodes (using pointers)

● Note: Also consider the possibilities that we can
also create intricate data structures such as linking
together arrays from these simple primitives.

15

Data Structure trade-offs (1/2)

● The abstractions we use to create a data
structure create result trade-offs in terms
of space (storage) and time (run-time):

○ Access time
■ i.e. to retrieve data

○ Search
■ query existence of data

○ Insertion
■ add more data, at the beginning, end, or

arbitrary position
○ Deletion

■ Remove data (beginning, end, or arbitrary
position)

● There may also be trade-offs regarding:
○ Allocation

■ Fixed or resizeable
○ Ease of use/implementation

16

https://www.bigocheatsheet.com/

https://www.bigocheatsheet.com/

Data Structure trade-offs (2/2)

● The abstractions we use to create a data
structure create result trade-offs in terms
of space (storage) and time (run-time):

○ Access time
■ i.e. to retrieve data

○ Search
■ query existence of data

○ Insertion
■ add more data, at the beginning, end, or

arbitrary position
○ Deletion

■ Remove data (beginning, end, or arbitrary
position)

● There may also be trade-offs regarding:
○ Allocation

■ Fixed or resizeable
○ Ease of use/implementation

17

https://www.bigocheatsheet.com/

Good News!

The C++ Standard Library comes
powered with several data structures

I will provide an overview of what is
available and how to choose a data
structure

https://www.bigocheatsheet.com/

Standard Template Library (STL)
Some History

18

Standard Template Library (STL) - History

19

● In 1993 Alexander Stepanov presented a generics library to the C++ standard
committee (in 1994 it was released, and officially adopted in C++98)

○ What this included was many data structures and container structures.
○ Prior to this time there was no ‘standard template library’ for C++

■ (Folks who have done Java or Python are use to using ‘import’ to get libraries)
○ Folks rolled their own library of data structures (and many still do this in specific domains)

● The Standard Template Library (STL) provides C++ programmers with a set
of standard: algorithms, containers, functions, and iterators.

○ This means regardless of the compiler, we can (for the most part) rely on having a common
set of tools to work with and implement C++ in.

○ Most vendors: Clang++, g++, MSVC, etc. have good implementations of the STL available

https://en.wikipedia.org/wiki/Alexander_Stepanov

The C++ Standard Library

20

● The Standard library offers us many
libraries

○ The ‘data structures’ portion we are
going to focus on in this talk are listed
under the ‘Containers Library’

● Note:
○ Things like ‘pair’, ‘tuple’, ‘string’, ‘bitset’,

‘valarray’ are data structures available
as well but not discussed today

■ They are special use cases of the
generic containers we will talk
about today.

https://en.cppreference.com/w/

https://en.cppreference.com/w/

21

22

23

4 main ‘categories’ of
containers

24

C++ Containers

25

Motivation: Standard Template Library (STL) Containers

26

● Some thoughts on motivating use of
the STL Containers:

○ First: These containers are ‘generic’ --
such that they can be used with any data
type.

Motivation: Standard Template Library (STL) Containers

27

● Some thoughts on motivating use of
the STL Containers:

○ First: These containers are ‘generic’ --
such that they can be used with any data
type.

Observe, in many cases I can also simply change
the container as well -- as the interfaces are often

identical!

Simply swap container and see if it gives you the
desired performance/behavior you need!

Motivation: Standard Template Library (STL) Containers

28

● Some thoughts on motivating use of
the STL Containers:

○ First: These containers are ‘generic’ --
such that they can be used with any data
type.

○ Second: The Containers are well tested,
and used by many developers.

Note: I do not have a statistic to prove this-- but
keep in mind the STL is the result of decades

and millions of C++ programmers writing code,
multiple compiler vendors, and top library writers

making and testing contributions..

Motivation: Standard Template Library (STL) Containers

29

● Some thoughts on motivating use of
the STL Containers:

○ First: These containers are ‘generic’ --
such that they can be used with any data
type.

○ Second: The Containers are well tested,
and used by many developers.

○ Third (and final point): STL Containers
work well with rest of the standard library

■ We have 100+ algorithms in the
STL available to use with
containers

Containers Iterator(s) Algorithms

30

Sequence Containers

31

Sequence Containers

8 6 7 5 3std::array<T,n>

v 1 2 99 1std::vector<T>

0 1 2 3 4

0 1 2 3

d 7 32std::deque<T>

0 1
25 96
0 1

5
0

l 7std::list<T> end2 6

fl 7std::forward_list<T> end2 6

● Containers that can be
accessed sequentially

○ Each container has a
linear (i.e. line-like)
arrangement/shape

■ i.e. Can move from
one element to the
next

● Observe some sequence
containers implemented with
‘arrays’ and some are ‘linked’
data structures.

std::array (1/3)

32

8 6 7 5 3std::array<T,n>

0 1 2 3 4

Quick Snapshot

std::array (2/3)

● In C++ 11 we got a new ‘array’ in the STL
○ The std::array container is functionally exactly

the same as a regular raw array.
○ It is a stack-allocated contiguous array

■ Size is fixed at compile-time
● We ‘prefer’ to use std::array versus raw

array (See to_array for conversion)
○ Can perform bounds checking (e.g. .at()

member function)
■ Several useful member functions available

● (See example on right)
○ Does not decay to a pointer in a function (i.e. it’s

very clear what data we are passing)

33

8 6 7 5 3std::array<T,n>

0 1 2 3 4

https://en.cppreference.com/w/cpp/container/array/to_array

std::array (3/3)

Behavior/Performance characteristics

● Allocation:
○ Static and fixed at compile-time

● Access:
○ Random access with an offset into the array

● Search:
○ O(n) if unsorted (i.e. linear search)
○ O(log2n) if sorted (i.e. binary search)

● Notes:
○ std::array always knows its length
○ Nicer interface (similar to std::vector) versus raw arrays.
○ Prefer curly brace initialization

■ std::array<int,5> a; //
uninitialized memory

■ std::array<int,5> a{}; // Default
initializes

■ std::array<int,5> a{1,2}; // Default
initializes remainder

34

8 6 7 5 3std::array<T,n>

0 1 2 3 4

std::vector (1/14)

35

Quick Snapshot

v 1 2 99 1std::vector<T>

0 1 2 3

std::vector (2/14)

● A std::vector in C++ is not to be
confused with a mathematical vector
from linear algebra

● A std::vector is a resizable array (i.e.
a dynamic array)

○ We can push (expand) in as many elements as
we want to the vector

○ And we can remove (shrink) existing elements
from a vector when no longer needed.

36https://en.cppreference.com/w/cpp/container/vector

v 1 2 99 1std::vector<T>

0 1 2 3

https://en.cppreference.com/w/cpp/container/vector

std::vector (3/14)

● It’s worth noting that a vector is ‘heap
allocated’

○ Observe the visualization to the right to best
understand that a vector keeps track of the
‘size’ and ‘capacity’ of the allocated memory

■ (next slide)

37

ptr

std::vector<T>

size=4 capacity=4

1 2 99 1
0 1 2 3

std::vector (4/14)

● It’s worth noting that a vector is ‘heap
allocated’

○ Observe the visualization to the right to best
understand that a vector keeps track of the
‘size’ and ‘capacity’ of the allocated memory

● When we ‘push_back(5)’ another
element will be added.

○ Sometimes this forces a reallocation.
○ It’s typical that a vector’s capacity may

increase by some factor (e.g. 1.6, 2.0, etc.)

38

ptr

1 2 99 1

std::vector<T>

0 1 2 3

size=5 capacity=8

5 ?? ?? ??
4 5 6 7

std::vector (5/14)

● shrink_to_fit()
○ A request to try to remove any unused

capacity in case our vector starts growing too
large (think millions of large objects stored)

■ (Behavior implementation defined)

39

ptr

1 2 99 1

std::vector<T>

0 1 2 3

size=5 capacity=5

5
4

https://en.cppreference.com/w/cpp/container/vector/shrink_to_fit

std::vector (6/14)

● What if I want to insert in the beginning
or middle of a contiguous data structure?

○ insert() does allow us to insert at an
arbitrary position

● Consider what must happen, and what
the performance must be.

○ (next slide for answer)

40

ptr

1 2 99 1

std::vector<T>

0 1 2 3

size=5 capacity=5

5
4

Insert here 42?

std::vector (7/14)

● What if I want to insert in the beginning
or middle of a contiguous data structure?

○ insert() does allow us to insert at an
arbitrary position

● Consider what must happen, and what
the performance must be.

○ First need to dynamically allocate new memory
large enough (potentially 1.6x or 2.0x the size)

41

ptr

1 2 99 1

std::vector<T>

0 1 2 3

size=5 capacity=5

5
4

?? ?? ?? ??
0 1 2 3

??
4

??
4

std::vector (8/14)

● What if I want to insert in the beginning
or middle of a contiguous data structure?

○ insert() does allow us to insert at an
arbitrary position

● Consider what must happen, and what
the performance must be.

○ First need to dynamically allocate new memory
large enough (potentially 1.6x or 2.0x the size)

○ Then copy elements (could be expensive if
copy is expensive!)

42

ptr

1 2 99 1

std::vector<T>

0 1 2 3

size=5 capacity=5

5
4

1 ?? 2 99
0 1 2 3

1
4

5
4

std::vector (9/14)

● What if I want to insert in the beginning
or middle of a contiguous data structure?

○ insert() does allow us to insert at an
arbitrary position

● Consider what must happen, and what
the performance must be.

○ First need to dynamically allocate new memory
large enough (potentially 1.6x or 2.0x the size)

○ Then copy elements (could be expensive if
copy is expensive!)

○ Insert our element

43

ptr

1 2 99 1

std::vector<T>

0 1 2 3

size=5 capacity=5

5
4

1 42 2 99
0 1 2 3

1
4

5
4

std::vector (10/14)

● What if I want to insert in the beginning
or middle of a contiguous data structure?

○ insert() does allow us to insert at an
arbitrary position

● Consider what must happen, and what
the performance must be.

○ First need to dynamically allocate new memory
large enough (potentially 1.6x or 2.0x the size)

○ Then copy elements (could be expensive if
copy is expensive!)

○ Insert our element
○ Update our pointer, and reclaim memory

44

ptr

1 2 99 1

std::vector<T>

0 1 2 3

size=6 capacity=6

5
4

1 42 2 99
0 1 2 3

1
4

5
5

std::vector (11/14)

● So std::vector are more flexible than
std::array,

○ We have to be careful if we perform insertion
(and removal) operations at anywhere other
than the end of the std::vector however.

● Good news however -- all of the hard
work to reallocate is done for us, we just
need to use the vector interface

○ It’s useful however to see exactly how this stuff
works.

45

ptr

std::vector<T>

size=6 capacity=6

1 42 2 99
0 1 2 3

1
4

5
5

std::vector (12/14)

● Aside:
○ There are some other useful tricks like using

‘.reserve(size_t n)’ to set the vector capacity
when you initially allocate it.

■ This prevents too many ‘reallocations’ if
you are going to populate the vector with
push_back -- especially when first
initializing the data structure.

46

ptr

std::vector<T>

size=6 capacity=6

1 42 2 99
0 1 2 3

1
4

5
5

https://en.cppreference.com/w/cpp/container/vector/reserve

std::vector (13/14)

47

v 1 2 99 1std::vector<T>

0 1 2 3

Behavior/Performance characteristics

● Allocation:
○ Dynamic

● Access:
○ Random access with an offset into the array

● Search:
○ O(n) if unsorted (i.e. linear search)
○ O(log2n) if sorted (i.e. binary search)

● Notes:
○ The default data structure for performance

and flexibility
■ (i.e. Probably what you’ll use most

frequently)

std::vector (14/14)

48

v 1 2 99 1std::vector<T>

0 1 2 3

Behavior/Performance characteristics

● More Notes:
○ Optimized for operations at end of the data

structure
○ Some mitigation of copying can be done

with .reserve
○ Use shrink_to_fit() to minimize capacity
○ std::string effectively a vector that is

optimized for primitive types
■ Though std::vector of std::byte may be

useful for a different use case.

std::deque (1/5)

49

Quick Snapshot

d 7 32std::deque<T>
0 1

25 96
0 1

5
0

std::deque (2/5)

50

d 7 32std::deque<T>
0 1

25 96
0 1

5
0

● std::deque’s are ‘double-ended queues’
○ A careful observation is that they are not typically

implemented as a contiguous data structure
■ The top-right view is how we can think of them.

○ Internally however -- there are links between fixed-size
arrays.

■ (next slide)

std::deque (3/5)

51

d 7 32std::deque<T>
0 1

25 96
0 1

5
0

● std::deque is a ‘double-ended queue’
○ A careful observation is that they are not typically

implemented as a contiguous data structure
■ The top-right view is how we can think of them.

○ Internally however -- there are links between fixed-size
arrays.

■ Some data structure (could be as simple as a
std::vector<chunks>) points us to the correct
fixed-size element.

○ So what does this mean?
○ (next slide)

d
7
32

25
96

0
1

5
??

map

2
3

??
??

d[0]

d[1]

d[2]

d[3]

d[4]

std::deque (4/5)

52

● std::deque allows for insertion at
both the front() and back() of the data
structure in constant time!

○ It’s easy to allocate another fixed-size array.

d 7 32std::deque<T>
0 1

25 96
0 1

5
0

std::deque (5/5)

53

Behavior/Performance characteristics

● Allocation:
○ Dynamically allocated (can resize)

● Access:
○ Constant time and Random access with an

offset
● Search:

○ O(n) if unsorted (i.e. linear search)
○ O(log2n) if sorted (i.e. binary search)

● Notes:
○ Ability to resize() if needed
○ Slightly extends upon std::vector interface

with ability to work with first elements.

d 7 32std::deque<T>
0 1

25 96
0 1

5
0

std::list (1/4)

54

Quick Snapshot

l 7std::list<T> end2 6

std::list (2/4)

55

l 7std::list<T> end2 6

● std::list is (usually) an implementation of
a doubly-linked list.

○ This means we have fast insertion and deletion
○ Note: We also do not have to worry so much about

iterator invalidation!
■ (More on this later)

○ It’s also worth noting there exist member functions
like ‘remove.if’ that have slightly different semantics
than std::remove_if

■ Meaning, we do in fact ‘erase’ elements.

https://en.cppreference.com/w/cpp/container/list/remove

std::list (3/4)

56

l 7std::list<T> end2 6

● (Aside) Just another example to
show how to splice (move
elements) from one list to the
other.

std::list (4/4)

57

Behavior/Performance characteristics

● Allocation:
○ Dynamic, just keep adding nodes as needed

● Access:
○ O(n) -- need to traverse list
○ O(1) for first (front) and last (back) element

● Search:
○ Linear -- need to traverse list

● Notes:
○ Take advantage of optimized member

functions (rather than generic <algorithm>’s)
for better performance/behavior

l 7std::list<T> end2 6

std::forward_list (1/3)

58

Quick Snapshot

fl 7std::forward_list<T> end2 6

std::forward_list (2/3)

59

● In short, this is singly linked list
○ Fast insertion at front of list with push_front

(constant time)
○ You’ll have to come up with your own

abstractions otherwise to add flexibility
● Similar to std::list, in some sense, but

way less power.
○ Lightweight container added in C++11

fl 7std::forward_list<T> end2 6

https://en.cppreference.com/w/cpp/container/forward_list/push_front

std::forward_list (3/3)

60

Behavior/Performance characteristics

● Allocation:
○ Dynamic (inserting one node at a time at the end)

● Access:
○ O(n), O(1) if you already have iterator handle

● Search:
○ O(n) -- linear search

● Notes:
○ std::forward_list does not know

its length
○ Useful if you are primarily going to be

adding to a data structure and traversing
few times

■ Optimized for space storage versus
std::list

fl 7std::forward_list<T> end2 6

61

62

Couple of ‘Gotcha’s’ with Containers (1/6)

● Containers ‘own’ the data
○ When we use push_back that is making a copy to be placed in the container
○ To avoid copies, can use emplace member functions to construct a new object

in place
■ (Should be faster, but of course measure to confirm)

● When removing data
○ C++ 20

■ std::erase and std::erase_if make things easier
○ Otherwise can use the erase-remove idiom

■ e.g.
● v.erase(std::remove(v.begin(), v.end(), 5), v.end());

■ Careful however if you are holding pointers or otherwise references to other objects, as memory
may not actually be freed.

● Generally where possible -- prefer the member functions of containers (especially if
you know know that is the member function you will be using)

○ Member function may be more optimized
○ May have a clearer interface

https://en.wikipedia.org/wiki/Erase%E2%80%93remove_idiom

63

Couple of ‘Gotcha’s’ with Containers (2/6)

● Consider after we insert a new
element in a vector, we may have
a ‘reallocation’ to a new block of
memory.

○ Any previous iterators are considered
‘invalid’ as they do not point to the
current vectors allocated memory

○ e.g.
■ (next slide)

https://en.cppreference.com/w/cpp/container

ptr

1 2 99 1
0 1 2 3

size=5 capacity=5

5
4

std::vector<T>

Some
iterator

https://en.cppreference.com/w/cpp/container

64

Couple of ‘Gotcha’s’ with Containers (3/6)

● Consider after we insert a new
element in a vector, we may have
a ‘reallocation’ to a new block of
memory.

○ Any previous iterators are considered
‘invalid’ as they do not point to the
current vectors allocated memory

○ e.g.
■ push_back(7)

● Let’s assume this forces a
new allocation

https://en.cppreference.com/w/cpp/container

ptr

1 2 99 1
0 1 2 3

size=5 capacity=5

5
4

std::vector<T>

Some
iterator

https://en.cppreference.com/w/cpp/container

65

Couple of ‘Gotcha’s’ with Containers (4/6)

● Consider after we insert a new
element in a vector, we may have
a ‘reallocation’ to a new block of
memory.

○ Any previous iterators are considered
‘invalid’ as they do not point to the
current vectors allocated memory

○ e.g.
■ push_back(7)

● Let’s assume this forces a
new allocation

■ Observe any iterators point to
the old data -- thus invalidated.

https://en.cppreference.com/w/cpp/container

ptr

1 2 99 1
0 1 2 3

size=6 capacity=8

5
4

std::vector<T>

Some
iterator

1 2 99 1
0 1 2 3

5
4

7 ??
5 6

??
7

https://en.cppreference.com/w/cpp/container

Couple of ‘Gotcha’s’ with Containers (5/6)

● When it comes to threading, that’s a
whole other talk, but consider:

○ You Can:
■ Safely read from a container with multiple

threads
■ Safely write to different locations so long

as one thread accessing a unique
node/index

○ You cannot:
■ Have simultaneous writes to the same

location however -- this require some
locking mechanism

● You should think about what
granularity makes sense for the
problem you are trying to solve and
how to appropriately compose the
result.

https://en.cppreference.com/w/cpp/container

https://en.cppreference.com/w/cpp/container

Couple of ‘Gotcha’s’ with Containers (6/6)

● A brief summary from cppreference about when to use each is below.
● Not sure?

○ Could simply start with std::vector, then profile otherwise.
■ Why this is the common advice is vector, array, or other contiguous data structures

provide good cache locality.
○ Consider how often you add/remove, and to what locations (front, back, or middle) to help

guide you.

67
https://en.cppreference.com/w/cpp/named_req/SequenceContainer

https://en.cppreference.com/w/cpp/named_req/SequenceContainer

68

69

Container Adaptors
Utilize different interface for containers we have already covered

70

Container Adaptors

● Container adaptors are not new
containers implemented in the
STL

○ Rather they modify by either
restricting or enhancing the
interface to other containers

○ When creating a container adaptor,
you get to choose the underlying
container (or otherwise accept the
default)

● Let’s take a look!

std::queue (1/3)

● First in First Out (FIFO) data structure
○ Just like a grocery line, first person in, gets

served first, last person who lines up gets
served last

● With queues, we can only really
access the first element, and remove
the first element in order to get the
next element.

71https://en.cppreference.com/w/cpp/container/queue

https://en.cppreference.com/w/cpp/container/queue

std::queue (2/3)

● A std::queue uses a std::deque by
default

○ But a ‘list’ could also be used -- we need
something where we can access first and
last element

72

std::queue (3/3)

73

Behavior/Performance characteristics

● Allocation:
○ Dynamic (see underlying data structure)

● Access:
○ O(1) at the front

● Search:
○ N/A; (Could pop off everything in O(n))

● Notes:
○ Restricts underlying storage to

give you ‘FIFO’ behavior.

std::stack (1/3)

● Last in, first out (LIFO) data structure
○ It’s like stacking a bunch of dishes, whatever

is on top, is the first dish that you take off to
wash

● Almost identical to the std::queue
interface, but we have the ‘top()’
member function to read the top of the
stack.

74https://en.cppreference.com/w/cpp/container/stack

https://en.cppreference.com/w/cpp/container/stack

std::stack (2/3)

● Uses again a std::deque by default
○ Can use a std::vector as well -- think about

why this works in a performant way (versus
a queue where you probably do not want
std::vector).

75

std::stack (3/3)

76

Behavior/Performance characteristics

● Allocation:
○ Dynamic (see underlying data structure)

● Access:
○ O(1) at the front

● Search:
○ N/A; (Could pop off everything in O(n))

● Notes:
○ Restricts underlying storage to

give you ‘FIFO’ behavior.

std::priority_queue (1/3)

● Similar to std::queue interface, but
we have sorting

○ Max element (by default) will always be the
top() of priority queue

77https://www.fluentcpp.com/tag/priority-queue/

https://www.fluentcpp.com/tag/priority-queue/

std::priority_queue (2/3)

● Uses again a std::vector by default
● May require you to implement a custom comparator in order to maintain heap

property in the queue.

78

std::priority_queue (3/3)

79

Behavior/Performance characteristics

● Allocation:
○ Dynamic (see underlying data structure)

● Access:
○ O(1) for top element

● Search:
○ Not really the right problem to solve
○ (Could pop off everything in O(n))

● Notes:
○ Need to to write a comparator for

non-primitive types so queue can be sorted.
See on YouTube an example of a custom
comparator data structure with comparator
C++ STL std::priority_queue (a container
adaptor) | Modern Cpp Series

https://www.youtube.com/watch?v=dxHx7EYehAQ&t=1s
https://www.youtube.com/watch?v=dxHx7EYehAQ&t=1s

std::flat_map (1/2)

● A new adaptor coming in C++23
○ Perhaps your compiler may have this available at the time of

watching this recording.
● Note that there are equivalent ‘flat’ data structures

for set, multimap, and multiset
● Upcoming in this talk I will show you two versions of

a ‘map’
○ One that uses a tree data structure and one that uses a

hashmap
○ The flatmap is a ‘third’ option which effectively flattens the

tree into a linear sequence (i.e. a sequence data structure
we have just discussed.

80https://en.cppreference.com/w/cpp/header/flat_map

https://en.cppreference.com/w/cpp/header/flat_map

std::flat_map (2/2)

81

Behavior/Performance characteristics

● Allocation:
○ Dynamic as well, but inserting and deletion

are linear time operations
● Access:

○ Fast to iterator through
● Search:

○ Ordered data structure, so should be log2(n)
with good cache locality

● Notes:
○ Coming soon!

82

83

Associative and Unordered Associative Containers (1/5)

● I’m going to talk about these two container type side-by-side
● As can be observed from the name, one container is ‘unordered’

○ The implication of this means that we can choose one container over the other based on the
ordering.

84

Associative and Unordered Associative Containers (2/5)

● Associative containers typically have a self-balancing binary tree (rb-tree) to
represent them.

● Unordered associative containers have a hash table
○ Observe a std::set to the left and observe an std::unordered_set on the right

85

7

4 9

2 5 8

hash(...)
hash(...)
hash(...)
hash(...)

7

4

9

2

5

8

● Observe a std::map to the left and observe an std::unordered_map on
the right

○ This time having a key and value pair. The key is what is sorted this time, and the value is the
information alongside in a node

Associative and Unordered Associative Containers (3/5)

86

“dog” hash(...)
hash(...)
hash(...)
hash(...)

7
key value

“cat” 42
key value

“pig” 18
key value

“pig” 18
key value

“dog” 7
key value

“cat” 42
key value

● Observe on the right in the std::unordered_map -- we do not want too
many nodes to ‘hash’ the key to the same ‘bucket’

○ If this happens, we no longer get average O(1) performance on unordered containers
○ For custom data types, this will be something we have to think about.

Associative and Unordered Associative Containers (4/5)

87

“dog” hash(...)
hash(...)
hash(...)
hash(...)

7
key value

“cat” 42
key value

“pig” 18
key value

“pig” 18
key value

“dog” 7
key value

“cat” 42
key value

● As a final note -- std::multiset, std::multimap,
std::unordered_multiset, and std::unordered_multimap allow for
duplicate keys

Associative and Unordered Associative Containers (5/5)

88

“dog” hash(...)
hash(...)
hash(...)
hash(...)

7
key value

“cat” 42
key value

“pig” 18
key value

“pig” 18
key value

“dog” 7
key value

“cat” 42
key value

89

Associative Containers
(All maintain ‘sorted’ data)

std::set (1/2)

● All keys are unique and in sorted
order

○ Implementation likely a self-balancing
tree like a red-black tree

90
https://en.cppreference.com/w/cpp/container/set

Quick Snapshot

https://en.cppreference.com/w/cpp/container/set

std::set (2/2)

91

Behavior/Performance characteristics

● Allocation:
○ Dynamic, can expand -- one unique key

however
● Access:

○ O(log2(n))
● Search:

○ O(log2(n))
● Notes:

○ sorted container

std::map (1/2)

● An associative data structure
consisting of a “key” and “value”
pair

○ The “key” is what we are sorting on

92
https://en.cppreference.com/w/cpp/container/set

Quick Snapshot

https://en.cppreference.com/w/cpp/container/set

std::map (2/2)

93

Behavior/Performance characteristics

● Allocation:
○ Dynamic, can expand -- one unique key

however
● Access:

○ O(log2(n))
● Search:

○ O(log2(n))
● Notes:

○ sorted container by the ‘key’
○ Consists of a key/value pair (std::pair)

std::unordered_set (1/2)

● All keys are unique and unordered
○ Stored in a hash table
○ Available since C++ 11

94https://en.cppreference.com/w/cpp/container/unordered_set

Quick Snapshot

https://en.cppreference.com/w/cpp/container/unordered_set

std::unordered_set (2/2)

95

Behavior/Performance characteristics

● Allocation:
○ Dynamic, can expand -- one unique key

however
● Access:

○ O(1) on average
● Search:

○ O(1) on average
● Notes:

○ Not sorted
○ Frequent resizing or a bad hash

function harms performance

std::unordered_map (1/2)

● All keys are unique and unordered
○ Stored in a hash table
○ An associative data structure consisting

of a “key” and “value” pair
○ The “key” is what we are sorting on

96
https://en.cppreference.com/w/cpp/container/set

Quick Snapshot

https://en.cppreference.com/w/cpp/container/set

std::unordered_map (2/2)

97

Behavior/Performance characteristics

● Allocation:
○ Dynamic, can expand -- one unique key

however
● Access:

○ O(1) on average
● Search:

○ O(1) on average
● Notes:

○ Not sorted
○ Frequent resizing or a bad hash

function harms performance

Common ‘Gotcha’s’ with associative containers

● Important to note that ‘at’ is a read operation
● operator[] will create the key if it does not exist, otherwise update the key

○ It may be worth updating the operations
● Generally, unordered variants are drop in replacements

○ i.e. try to replace a std::map with std::unordered_map in your code if you do not need sorting

98

Wrapping Up

99

Summary

100

● We have had a tour of the containers in the C++ Standard Library
○ My goal is that you now understand there are a variety of data structures available for you to

get started and tackle your programming challenges!
○ Choosing the right container can often make a large impact on performance and ease of

solving a problem.

Introduction to C++ Containers
-- Know Your Data Structures

with Mike Shah

17:15 - 16:15 Fri, November 12, 2023

~60 minutes | Introductory Audience 101

Thank you Meeting C++ 2023!

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Thank you!

102

